A New Analysis of the Fluorescence Spectrum of Eu³ in A-Type $\mathrm{La}_{2} \mathrm{O}_{3}$

O. K. MOUNE, P. PORCHER, AND P. CARO
Laboratoire des Elements de Transition dans les Solides, ER 210 du CNRS
1, Place Aristide Briand, 92190 Meudon Bellevue, France

Received April 12, 1983; in revised form June 27, 1983

Abstract

The fluorescence spectrum of Eu^{3+} doping the A-type sesquioxide $\mathrm{La}_{2} \mathrm{O}_{3}$ has been reinterpreted using dye laser excitation of the ${ }^{5} D_{0}$ level. New assignments and crystal field parameters are obtained. The E representation of the ${ }^{7} F_{1}$ level appears to be clearly split at 77 K . From this fact and the general broadness of the lines at 300 K , one suggests that the doping Eu^{3+} ion is slightly off-center with respect to the theoretical lanthanum coordinates and may tunnel between different off-center positions at high temperature.

The fluorescence spectrum of Eu^{3+} doping at low concentration the hexagonal sesquioxide A - $\mathrm{La}_{2} \mathrm{O}_{3}$ has been previously interpreted (1). In the course of a study of two of the crystallographic forms of the oxycarbonates $(\mathrm{LaO})_{2} \mathrm{CO}_{3}$ doped with europium, a spectrum for Eu^{31} ions engaged within an impurity in the samples was obtained as the result of scanning the dye laser excitation (2). This spectrum excited at $5810.2 \AA\left(17,211 \mathrm{~cm}^{-1}\right)$ at 300 K was very similar, but had some definite differences, with the one to be expected from the excitation into the ${ }^{5} D_{0}$ level of Eu^{3+} doping A $\mathrm{La}_{2} \mathrm{O}_{3}$ according to the sequence of energy levels reported in Ref. (1). As $A-\mathrm{La}_{2} \mathrm{O}_{3}$ is a very likely impurity for the oxycarbonates the parasite spectrum was checked against the one of a $1 \% \mathrm{Eu}^{3+}$ doped sample of pure $A-\mathrm{La}_{2} \mathrm{O}_{3}$ prepared by firing the oxalate in a platinum crucible at $1200^{\circ} \mathrm{C}$ for 24 hr . The sample being cooled was kept under an atmosphere free of water and carbon dioxide. The fluorescence spectrum of this material, excited at $5810.2 \AA$, was identical to the one
for the impurity in the oxycarbonates, whereas the fluorescence spectrum excited under conventional uv light ($3600 \AA$) was in fact identical to the original one (1) as obtained by Linarès and Gaume-Mahn (3). It was then apparent that a few misinterpretations had occurred concerning the fluorescence lines originating from the ${ }^{5} D_{0}$ level in Ref. (1). In 1973 dye laser excitation was not available and consequently the attributions to ${ }^{5} D_{0}$ cannot be checked. However, an important consequence is that the site symmetry to be attributed to the doping Eu^{3+} atom cannot be with confidence ascribed to $C_{3 v}$ in agreement with the theoretical site symmetry of the lanthanum atom in the cristallographic structure.

I. The Fluorescence Spectrum of $\mathbf{E u}^{3+}$ in A-La C_{3}

The fluorescence spectrum of A $\mathrm{La}_{2} \mathrm{O}_{3}: \mathrm{Eu}^{3+}$ was obtained at 300,77 , and 4.2 K in the wavelength range $4500-7000 \AA$ through a 1-m Jarrel-Ash monochromator
(Fig. 1). The fluorescence was excited with a uv high pressure mercury lamp, equipped with a Wood filter ($\sim 3600 \AA$). The data are very rich, since at 77 K more than 120 lines are recorded, due to the ${ }^{5} D_{J}(J=0,1,2,3)$ $\rightarrow{ }^{7} F_{J}(J=0,1,2,3,4,5,6)$ transitions (Table I). Such a spectrum is difficult to interpret completely, since many transitions occurring from different emitting levels are superimposed. To help the attributions, we measured the spectrum with two Eu^{3+} concentrations (1 and 5\%). This fact, as well as the temperature, modifies the emitting levels quenching and the relative intensities of the transitions. An alternative help was the use of the rhodamine 6 G dye laser selective excitation, accorded on the ${ }^{5} D_{0} \rightarrow{ }^{7} F_{0}$ transition. This last technique is most powerful, since it is easy to attribute unambiguously the ${ }^{7} F_{J}$ Stark levels giving an allowed transition from ${ }^{5} D_{0}$. The only remaining problem was the hypersensitive ${ }^{5} D_{0} \rightarrow{ }^{7} F_{2}$ transition, accompanied by various vibronic lines as well as ${ }^{5} D_{2} \rightarrow{ }^{7} F_{2}$. But a comparison with another transition, say, ${ }^{5} D_{1} \rightarrow{ }^{7} F_{2}$, magnetic dipolar and nonhypersensitive, gave the ${ }^{7} F_{2}$ Stark level sequence. Moreover, the comparison of ${ }^{5} D_{2}$ $\rightarrow{ }^{7} F_{5}$ with ${ }^{5} D_{1} \rightarrow{ }^{7} F_{5}$ at different temperatures gave a quite complete ${ }^{7} F_{5}$ Stark level sequence, as well as some of their associated irreducible representations.

The differences with the interpretation in Ref. (1) are as follows:
(a) Instead of a single line at $16,772 \mathrm{~cm}^{-1}$ for the ${ }^{5} D_{0}\left(A_{1}\right) \rightarrow{ }^{7} F_{1}(E)$ transition, the dye laser showed two lines at 16,791 and 16,766 cm^{-1}. These lines show up as well in the uv excitation. The first one was attributed by the authors of Ref. (1) to a line from ${ }^{5} D_{2}$.
(b) The lines at 15,929 and $15,871 \mathrm{~cm}^{-1}$ which, according to the table in (1), correspond to transitions ${ }^{5} D_{1} \rightarrow{ }^{7} F_{4}$ remain under selective excitation of ${ }^{5} D_{0}$. They apparently are vibronic satellites of ${ }^{5} D_{0} \rightarrow{ }^{7} F_{2}$.
(c) The line predicted from (I) at 15,171
cm^{-1} as member of the ${ }^{5} D_{0} \rightarrow^{7} F_{3}$ group is in fact a ${ }^{5} D_{1} \rightarrow{ }^{7} F_{5}$ transition, but we detected a new line at $15,269 \mathrm{~cm}^{-1}$ which belongs to ${ }^{5} D_{0} \rightarrow{ }^{7} F_{3}$.
(d) The lines predicted from (1) at 14,503 and $14,312 \mathrm{~cm}^{-1}$ as ${ }^{5} D_{0} \rightarrow{ }^{7} F_{4}$ are not observed under dye laser excitation. Instead, a strong line appears at $14,128 \mathrm{~cm}^{-1}$ as part of the ${ }^{5} D_{0} \rightarrow{ }^{7} F_{4}$ group. This line was taken by the authors of Ref. (1) as a spurious mercury line (3). The levels derived from the present analysis are given in Table II.

II. Energy Level Sequence and Crystal Field Parameters

In our study, one of the most surprising fact is the observation of a degeneracy lifting of the $E, C_{3 v}$ irreducible representation for the ${ }^{7} F_{1}$ level (Table II). The splitting of $25 \mathrm{~cm}^{-1}$ is observed for all the recorded transitions having ${ }^{7} F_{1}$ as final level, i.e., ${ }^{5} D_{0}$ $\rightarrow{ }^{7} F_{1},{ }^{5} D_{1} \rightarrow{ }^{7} F_{1}$, and ${ }^{5} D_{2} \rightarrow{ }^{7} F_{1}$. Except for these cases, the number of observed lines is in agreement with the $C_{3 v}$ point site selection rules for all other transitions. It seems difficult to explain such a feature. For instance, because of the quite perfect homothetic ratio we shall expect a $6-\mathrm{cm}^{-1}$ splitting for the corresponding ${ }^{5} D_{1}$ irreducible representation. We did not measure any such splitting, however, and the other $E\left(C_{3 v}\right)$ levels remain degenerate as well.

We tried to simulate the data by computing crystal field parameters (cfp) in the $49 \times$ $49 \mid$ SLJM $\left._{J}\right\rangle$ basis of the ${ }^{7} F_{J}$ (4). The first step was to consider a pure $C_{3 v}$ point symmetry for the rare earth. Five cfp are then involved. From our experimental energy level scheme, we found $B_{0}^{2}=-668 \pm 16$ $\mathrm{cm}^{-1}, B_{0}^{4}=448 \pm 33 \mathrm{~cm}^{-1}, B_{3}^{4}=1216 \pm 16$ $\mathrm{cm}^{-1}, B_{0}^{6}=1041 \pm 23 \mathrm{~cm}^{-1}, B_{3}^{6}=-231 \pm 16$ cm^{-1}, and $B_{6}^{6}=558 \pm 19 \mathrm{~cm}^{-1}$, all levels being quite correctly simulated since the rms deviation is $8.3 \mathrm{~cm}^{-1}$. Naturally, the sixth rank cfp differ from those of Ref. (1) as a consequence of a different attribution

Fig. 1. Emission spectra of $\mathrm{Eu}^{3+}: \mathrm{La}_{2} \mathrm{O}_{3}(1 \%)$ at 4, 77 , and 300 K under uv excitation ($\mathbf{v}=$ vibronics).
for ${ }^{7} F_{4}$ Stark levels. The second step was to take into account the degeneracy lifting in ${ }^{7} F_{1}$, by adding to the crystal field Hamiltonian another operator involving the B_{2}^{2} parameter. Then the site is considered to have
no symmetry (27 parameters in all), but only the $C_{3 v}$ parameters and the B_{2}^{2} have nonzero values. Results from the adjustment were $B_{0}^{2}=-665 \pm 16 \mathrm{~cm}^{-1}, B_{2}^{2}=50$ cm^{-1} (fixed), $B_{0}^{4}=471 \pm 36 \mathrm{~cm}^{-1}, B_{3}^{4}=1221$

TABLE I
Observed Emission Lines and Assignment for Eu $^{3+}: \mathrm{La}_{2} \mathrm{O}_{3}(1 \%)$ at 77 and 4 K under uv Excitation

$E\left(\mathrm{~cm}^{-1}\right)$		Transition	Assignment $\left(C_{30}\right)$	$E\left(\mathrm{~cm}^{-1}\right)$		Transition	Assignmen $\left(C_{30}\right)$
77 K	4 K			77 K	4 K		
21,636	21,635	${ }^{5} D_{3} \rightarrow{ }^{7} F_{4}$	$A_{1} \rightarrow A_{1}$	19,461	19,458	${ }^{5} D_{2} \rightarrow{ }^{7} F_{3}$	$E \rightarrow A_{2}$
21,503		${ }^{5} D_{3} \rightarrow{ }^{7} F_{4}$	$? \rightarrow E$		19,444	v	
21,473		${ }^{5} D_{2} \rightarrow{ }^{7} F_{0}$	$E \rightarrow A_{1}$	19,440	19,439	${ }^{5} D_{2} \rightarrow{ }^{7} F_{3}$	$E \rightarrow E$
21,455		${ }^{5} D_{2} \rightarrow{ }^{7} F_{0}$	$A_{1} \rightarrow A_{1}$	19,427	19,423	${ }^{5} D_{2} \rightarrow{ }^{7} F_{3}$	$E \rightarrow A_{1}$
21,424	21,422	${ }^{5} D_{3} \rightarrow{ }^{7} F_{4}$	$A_{1} \rightarrow E$	19,309		v	
21,400		${ }^{5} D_{3} \rightarrow{ }^{7} F_{4}$	$? \rightarrow A_{1}$	19,305	19,303	${ }^{5} D_{2} \rightarrow{ }^{7} F_{3}$	$E \rightarrow A_{2}$
21,386	21,382	${ }^{5} D_{2} \rightarrow{ }^{7} F_{0}$	$E \rightarrow A_{1}$		19,296	v	
21,367		${ }^{5} D_{2} \rightarrow{ }^{\dagger} F_{4}$	$E \rightarrow A_{1}$	18,980		${ }^{5} D_{1} \rightarrow{ }^{7} F_{0}$	$E \rightarrow A_{1}$
21,304		${ }^{5} D_{3} \rightarrow{ }^{7} F_{4}$	$? \rightarrow A_{1}$	18,946	18,942	${ }^{5} D_{1} \rightarrow{ }^{7} F_{0}$	$A_{2} \rightarrow A_{1}$
21,267		${ }^{5} D_{3} \rightarrow{ }^{7} F_{4}$	$? \rightarrow E$	18,859		${ }^{5} D_{2} \rightarrow{ }^{7} F_{4}$	$E \rightarrow A_{1}$
21,241		${ }^{3} D_{3} \rightarrow{ }^{7} F_{4}$	$? \rightarrow E$	18,843		${ }^{5} D_{2} \rightarrow{ }^{7} F_{4}$	$A_{1} \rightarrow A_{1}$
21,234	21,230	${ }^{5} D_{3} \rightarrow{ }^{7} F_{4}$	$A_{1} \rightarrow E$	18,772	18,770	${ }^{5} D_{2} \rightarrow{ }^{7} F_{4}$	$E \rightarrow A_{1}$
21,225		${ }^{5} D_{2} \rightarrow{ }^{7} F_{1}$	$A_{1} \rightarrow A_{2}$	18,749		${ }^{5} D_{1} \rightarrow{ }^{7} F_{1}$	$E \rightarrow A_{2}$
21,205		?			18,690	v	
21,184	21,180	${ }^{5} D_{3} \rightarrow{ }^{7} F_{4}$	$A_{1} \rightarrow E$		18,697	v	
21,156	21,151	${ }^{5} D_{2} \rightarrow{ }^{7} F_{1}$	$E \rightarrow A_{2}$	18,696	18,711	${ }^{5} D_{1} \rightarrow{ }^{7} F_{1}$	$A_{2} \rightarrow A_{2}$
21,033		${ }^{5} D_{2} \rightarrow{ }^{7} F_{1}$	$A_{1} \rightarrow E$		18,721	v	
21,013		${ }^{5} D_{2} \rightarrow{ }^{7} F_{1}$	$A_{1} \rightarrow E$		18,730	v	
20,963	20,958	${ }^{5} D_{2} \rightarrow{ }^{7} F_{1}$	$E \rightarrow E$	18,679		?	
20,939	20,932	${ }^{5} D_{2} \rightarrow{ }^{7} F_{1}$	$E \rightarrow E$	18,644		${ }^{5} D_{2} \rightarrow{ }^{7} F_{4}$	$E \rightarrow E$
20,565		${ }^{5} D_{3} \rightarrow{ }^{7} F_{5}$?	18,628		${ }^{5} D_{2} \rightarrow{ }^{7} F_{4}$	$A_{1} \rightarrow E$
20,549		${ }^{5} D_{2} \rightarrow{ }^{7} F_{2}$	$A_{1} \rightarrow A_{1}$		18,604	?	
20,533		${ }^{5} \mathrm{D}_{2} \rightarrow{ }^{7} \mathrm{~F}_{2}$	$A_{1} \rightarrow E$	18,580		${ }^{5} D_{2} \rightarrow{ }^{7} F_{4}$	$E \rightarrow A_{2}$
20,524		${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{5}$?	18,558	18,556	${ }^{5} D_{2} \rightarrow{ }^{7} F_{4}$	$E \rightarrow E$
20,481	20,478	${ }^{5} D_{2} \rightarrow{ }^{7} F_{2}$	$E \rightarrow A_{1}$	18,533	18,521	${ }^{5} D_{1} \rightarrow{ }^{7} F_{1}$	$A_{2} \rightarrow E$
20,462	20,458	${ }^{5} D_{2} \rightarrow{ }^{7} F_{2}$	$E \rightarrow E$	18,495	18,492	${ }^{5} D_{1} \rightarrow{ }^{7} F_{1}$	$A_{2} \rightarrow E$
20,351	20,349	${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{5}$?		18,477	?	
20,220		${ }^{5} D_{2} \rightarrow{ }^{7} F_{2}$	$A_{1} \rightarrow E$	18,433		${ }^{5} D_{2} \rightarrow{ }^{7} F_{4}$	$A_{1} \rightarrow A_{1}$
20,155	20,153	${ }^{5} D_{2} \rightarrow{ }^{7} F_{2}$	$E \rightarrow E$		18,423	?	
20,136	20,149	$\mathrm{v}^{\text {a }}$		18,415		${ }^{5} D_{2} \rightarrow{ }^{7} F_{4}$	$E \rightarrow E$
20,103	20,131	v		18,387		${ }^{5} D_{2} \rightarrow{ }^{7} F_{4}$	$E \rightarrow E$
20,088	20,095	v					$\left.A_{1} \rightarrow E\right]$
20,041	20,035	v		18,362	18,360	${ }^{5} D_{2} \rightarrow{ }^{7} F_{4}$	$E \rightarrow A_{1}$
20,027		v		18,320		${ }^{5} D_{2} \rightarrow{ }^{7} F_{4}$	$E \rightarrow E$
19,586		${ }^{5} D_{2} \rightarrow{ }^{7} F_{3}$	$E \rightarrow E$	18,298	18,296	${ }^{5} D_{2} \rightarrow{ }^{7} F_{4}$	$E \rightarrow E$
19,570		${ }^{5} D_{2} \rightarrow{ }^{7} F_{3}$	$A_{1} \rightarrow E$	18,072		${ }^{5} D_{1} \rightarrow{ }^{7} F_{2}$	$E \rightarrow A_{1}$
	19,552	?		18,054		${ }^{5} D_{1} \rightarrow{ }^{7} F_{2}$	$E \rightarrow E$
	19,535	?		18,036	18,035	${ }^{5} D_{1} \rightarrow{ }^{7} F_{2}$	$A_{2} \rightarrow A_{1}$
19,527		${ }^{5} D_{2} \rightarrow{ }^{7} F_{3}$	$A_{1} \rightarrow A_{2}$	18,020	18,017	${ }^{5} D_{1} \rightarrow{ }^{7} F_{2}$	$A_{2} \rightarrow E$
19,511			$A_{1} \rightarrow E$		17,951	?	
19,500	19,499	${ }^{5} D_{2} \rightarrow{ }^{7} F_{3}$	$E \rightarrow E$	17,742		${ }^{5} D_{1} \rightarrow{ }^{7} F_{2}$	$E \rightarrow E$

TABLE I-Continued

$E\left(\mathrm{~cm}^{-1}\right)$		Transition	$\begin{aligned} & \text { Assignment } \\ & \left(C_{3 v}\right) \end{aligned}$	$E\left(\mathrm{~cm}^{-1}\right)$		Transition	Assignment $\left(C_{30}\right)$
77 K	4 K			77 K	4 K		
17,710		${ }^{5} D_{1} \rightarrow{ }^{7} F_{2}$	$A_{2} \rightarrow E$	16,226	16,224	$?$	
17,699		${ }^{5} D_{2} \rightarrow{ }^{7} F_{5}$	$E \rightarrow E$	16,148		${ }^{5} D_{1} \rightarrow{ }^{7} F_{4}$	$E \rightarrow E$
17,658		${ }^{5} D_{2} \rightarrow{ }^{7} F_{5}$	$E \rightarrow A_{1}$	16,114	16,112	${ }^{5} D_{1} \rightarrow{ }^{7} F_{4}$	$A_{2} \rightarrow E$
17,642		${ }^{5} D_{2} \rightarrow{ }^{7} F_{5}$	$A_{1} \rightarrow A_{1}$	16,085		${ }^{5} D_{1} \rightarrow{ }^{7} F_{4}$	$E \rightarrow A_{2}$
17,613		${ }^{5} D_{2} \rightarrow{ }^{7} F_{5}$	$E \rightarrow E$	16,050	16,048	${ }^{5} D_{1} \rightarrow{ }^{7} F_{4}$	$A_{2} \rightarrow A_{2}$
17,570		${ }^{5} D_{2} \rightarrow{ }^{7} F_{5}$	$E \rightarrow A_{1}$	15,978	16,973	${ }^{5} D_{0} \rightarrow{ }^{7} F_{2}$	$A_{1} \rightarrow E$
17,547		${ }^{5} D_{2} \rightarrow{ }^{7} F_{5}$	$A_{1} \rightarrow A_{2}$	15,956	16,952	v	
			$E \rightarrow E]$	15,927	16,924	v	
17,481		${ }^{5} D_{2} \rightarrow{ }^{7} F_{5}$	$E \rightarrow A_{2}$	15,892		v	
17,461		${ }^{5} D_{2} \rightarrow{ }^{7} F_{5}$	$E \rightarrow E$	15,862	18,866	v	
17,376		${ }^{5} D_{2} \rightarrow{ }^{7} F_{5}$	$E \rightarrow E$	15,849		v	
17,313		${ }^{5} D_{2} \rightarrow{ }^{7} F_{5}$	$A_{1} \rightarrow E$	15,323	16,325	${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{3}$	$A_{1} \rightarrow E$
			$E \rightarrow A_{2}$]	15,282	16,280	${ }^{5} D_{0} \rightarrow{ }^{7} F_{3}$	$A_{1} \rightarrow A_{2}$
17,248		${ }^{5} D_{2} \rightarrow{ }^{7} F_{5}$	$E \rightarrow E$	15,264	16,262	${ }^{5} D_{0} \rightarrow{ }^{7} F_{3}$	$A_{1} \rightarrow E$
17,224	17,221	v		15,252	16,248	${ }^{5} D_{0} \rightarrow{ }^{7} F_{3}$	$A_{t} \rightarrow A_{t}$
17,210	17,209	${ }^{5} D_{0} \rightarrow{ }^{7} F_{0}$	$A_{1} \rightarrow A_{1}$	15,205		${ }^{5} D_{1} \rightarrow{ }^{7} F_{5}$	$E \rightarrow E$
17,206	17,203	v		15,171	15,167	${ }^{5} D_{1} \rightarrow{ }^{7} F_{5}$	$A_{2} \rightarrow E$
	17,120	?		15,075		${ }^{5} D_{1} \rightarrow{ }^{7} F_{5}$	$E \rightarrow A_{2}$
	17,095	?		15,039	15,035	${ }^{5} D_{1} \rightarrow{ }^{7} F_{5}$	$A_{2} \rightarrow \boldsymbol{A}_{2}$
17,090		${ }^{5} D_{1} \rightarrow{ }^{7} F_{3}$	$E \rightarrow E$	15,020	15,015	${ }^{5} D_{1} \rightarrow{ }^{7} F_{5}$	$A_{2} \rightarrow E$
17,057	17,055	${ }^{5} D_{1} \rightarrow{ }^{7} F_{3}$	$A_{2} \rightarrow E$	14,998		?	
17,050		${ }^{5} D_{1} \rightarrow{ }^{7} F_{3}$	$E \rightarrow A_{2}$	14,980		${ }^{5} D_{1} \rightarrow{ }^{7} \bar{F}_{5}$	$E \rightarrow E$
17,031		${ }^{5} D_{1} \rightarrow{ }^{7} F_{3}$	$E \rightarrow E$		14,947	${ }^{5} D_{1} \rightarrow{ }^{7} F_{5}$	$A_{2} \rightarrow E$
17,018	17,015	${ }^{5} D_{1} \rightarrow{ }^{7} F_{3}$	$A_{2} \rightarrow A_{2}$	14,919		?	
16,997	16,995	${ }^{5} D_{1} \rightarrow{ }^{7} F_{3}$	$A_{2} \rightarrow E$	14,845		${ }^{5} D_{1} \rightarrow{ }^{7} F_{5}$	$E \rightarrow E$
16,984	16,977	${ }^{5} D_{0} \rightarrow{ }^{7} F_{1}$	$A_{2} \rightarrow A_{2}$	14,812	14,808	${ }^{5} D_{1} \rightarrow{ }^{7} F_{5}$	$A_{2} \rightarrow E$
		${ }^{5} D_{1} \rightarrow{ }^{7} F_{3}$	$A_{2} \rightarrow A_{1}$]	14,779	14,774	${ }^{5} D_{1} \rightarrow{ }^{7} F_{5}$	$A_{2} \rightarrow A_{2}$
16,900		${ }^{5} D_{1} \rightarrow{ }^{7} F_{3}$	$E \rightarrow A_{2}$		14,612	?	
16,869	16,869	${ }^{5} D_{1} \rightarrow{ }^{7} F_{3}$	$A_{2} \rightarrow A_{2}$	14,596	14,596	${ }^{5} D_{0} \rightarrow{ }^{7} F_{4}$	$A_{1} \rightarrow A_{1}$
16,793	16,788	${ }^{5} D_{0} \rightarrow{ }^{7} F_{1}$	$A_{1} \rightarrow E$	14,380	14,380	${ }^{5} D_{0} \rightarrow{ }^{7} F_{4}$	$A_{1} \rightarrow E$
16,766	16,763	${ }^{5} D_{0} \rightarrow{ }^{7} F_{1}$	$A_{1} \rightarrow E$	14,184	14,182	${ }^{5} D_{0} \rightarrow{ }^{7} F_{4}$	$A_{1} \rightarrow A_{1}$
16,362		${ }^{5} D_{1} \rightarrow{ }^{7} F_{4}$	$E \rightarrow A_{1}$	14,140	14,136	${ }^{5} D_{0} \rightarrow{ }^{7} F_{4}$	$A_{1} \rightarrow E$
16,303	16,301	${ }^{5} D_{0} \rightarrow{ }^{7} F_{2}$	$A_{1} \rightarrow A_{1}$	14,119	14,118	${ }^{5} D_{0} \rightarrow{ }^{7} F_{4}$	$A_{1} \rightarrow E$
16,285	16,283	${ }^{5} D_{0} \rightarrow{ }^{7} F_{2}$	$A_{1} \rightarrow E$				

${ }^{a} \mathrm{v}$: vibronics.
$\pm 17 \mathrm{~cm}^{-1}, B_{0}^{6}=1045 \pm 24 \mathrm{~cm}^{-1}, B_{3}^{6}=-232$ $\pm 17 \mathrm{~cm}^{-1}, B_{6}^{6}=554 \pm 20 \mathrm{~cm}^{-1}$. The rms deviation was $8.5 \mathrm{~cm}^{-1}$, almost the same as previously. The list of computed and experimental levels is given in Table II. It can be seen that, with the exception of ${ }^{7} F_{1}$, the computed splitting of the $C_{3 v}, E$ representation is rather small, always less than 10 cm^{-1}. However, such splittings are not experimentally observed.

III. Optical Study of Part of the $\mathrm{La}_{2} \mathbf{O}_{\mathbf{3}}-\mathrm{Eu}_{2} \mathrm{O}_{3}$ Binary System

Because of the difference in ionic radii between lanthanum and europium one may suspect that the smaller europium atom distorts the lanthanum site and that the optical signal is the indication that europium does not fit well into the $(\mathrm{LaO})_{n}^{n+}$ framework in the A-type structure (5). Moreover it is

TABLE II
Calculated and Experimental Energy Levels of $\mathrm{Eu}^{3+}: \mathrm{La}_{2} \mathrm{O}_{3}$ (1%) (See text for values of the crystal field parameters)

known that small amounts of yttric impurities in the A-type structure induce monoclinic B-type $\mathrm{Ln}_{2} \mathrm{O}_{3}$ domains, presumably because of mechanical stresses similar to those which can be readily produced by thermal pulse-annealing in thin A-type oxide films (6). The B-type domains are easily detected from optical experiments, for example, on yttrium-doped neodymium oxide (7).

To test the influence of the europium concentration on the stability of the A-type lanthanum oxide structure, we prepared compositions within the $\mathrm{La}_{2} \mathrm{O}_{3}-\mathrm{Eu}_{2} \mathrm{O}_{3}$ binary system and recorded the fluorescence spectra of the samples. The binary phase diagrams of the lanthanum oxide with the other rare earth oxide have been established by Foëx and his co-workers $(8,9)$ with the exception of europium (because of the volatility at high temperatures). The phase diagrams established through thermal analysis and high temperature X rays show a rather large domain of A-type stability at temperatures above $1400^{\circ} \mathrm{C}$ which shall extend at this temperature up to 30% or more $\mathrm{Eu}_{2} \mathrm{O}_{3}$ according to the diagrams for Sm and Gd . We prepared our samples in the same conditions as described above, i.e., at $1200^{\circ} \mathrm{C}$ for 24 hr . The fluorescence spectra under uv excitation at 77 K for several compositions are shown in Fig. 2.

The lines broaden as the europium concentration increases, which is to be expected for solid solutions, and the relative intensity of the emissions from the ${ }^{5} D_{1}$ level strongly decreases (concentration quenching); but the position of the ${ }^{5} D_{0} \rightarrow{ }^{7} F_{0}$ transition and the splitting of ${ }^{5} D_{0} \rightarrow{ }^{7} F_{1}$ are not greatly affected by the increase in europium concentration up to 25% molar within the A-type solid solution domain. With more $\mathrm{Eu}_{2} \mathrm{O}_{3}$ the spectrum changes to one characteristic of a B-type solid solution with structural disorder superimposed on signals from the three different cristallographic sites for the europium atom (10).

IV. Discussion

The space group of the A-type rare earth sesquioxide structure has been the subject of disputes in the past. The differences were reviewed by Aldebert and Traverse (11). It is now generally agreed from neutron diffraction (11, 12), electron diffraction (13), and Raman spectroscopy (14) that the correct space group is $P 3 m 1$, in agreement with Pauling's original suggestion (15). In fact all of the models considered have in common the existence of a trigonal cristallographic axis.

To understand the lifting of the degeneracy of the $E\left(C_{3 v}\right)$ representation in ${ }^{7} F_{1}$ it is necessary to assume that the threefold symmetry is destroyed at the europium site. This is either a local phenomenon or one should admit the improbable fact that the established space group of the A-type structure is incorrect.

To get some quantitative insight into the crystallographic distortions needed to produce the observed spectrum, we simulated (16), by an electrostatic calculation, the change induced in the crystal field parameters by a small displacement of the europium atom, destroying the threefold symmetry. We displaced the europium atom in the (0001) plane in the [$1 \overline{100}$] direction in order to tilt the C_{3} axis of the site by 1°. The distortion chosen is a step towards the formation of the B-type site in the A-type structure. In those conditions the europium atom is off-center with respect to the normal lanthanum atom site by $0.042 \AA$. The calculation was done with point charges only (I7). In the conventional A-type structure the computed B_{0}^{2} value is $-2108 \mathrm{~cm}^{-1}$. In the distorted structure it is $-2051 \mathrm{~cm}^{-1}$ but a B_{2}^{2} of $280 \mathrm{~cm}^{-1}$ is created. The $C_{3 v}$ parameters of ranks 4 and 6 are practically unchanged by the 1° distortion, and the numerous other parameters induced are very small. Taking the ratio of $B_{q}^{2} \exp / B_{q}^{2}$ calc. $=$ 0.32 as a correction factor for the effective

Fig. 2. Emission spectra of compositions in the $\mathrm{Eu}_{2} \mathrm{O}_{3}-\mathrm{La}_{2} \mathrm{O}_{3}$ binary diagram under uv excitation at 77 K.

Fig. 3. Dye laser excitation $\left(\lambda_{E}\right)$ at 77 and 300 K of the emission spectrum of $\mathrm{Eu}^{3+}: \mathrm{La}_{2} \mathrm{O}_{3}(1 \%)(\mathrm{v}=$ vibronics).

Slater radial integrals (17) the induced effective B_{2}^{2} parameter for that distortion should be $88 \mathrm{~cm}^{-1}$. The experimental value being $50 \mathrm{~cm}^{-1}$, the tilt angle sufficient to generate the observed result will be roughly 30 min of an arc.

It is clear then that the degeneracy lifting of the E representation of ${ }^{7} F_{1}$ comes from a very small crystallographic distortion, and is seen only because the particular electrostatic arrangement of the atoms involved
yields high values for B_{2}^{2} when it is disturbed.

But other interpretations, such as elec-tron-phonon coupling ($18-20$), could explain why only the ${ }^{7} F_{1} E$ level is split. On the other hand, the fact that at 300 K the splitting observed at 77 K has disappeared within the broadening of the lines (Fig. 3) may indicate a phenomenon similar to what happens by doping a structure like KTaO_{3} with lithium (21-23); at 77 K the doping
Eu^{3+} element could be off-center with respect to the ideal lanthanum position.

The phenomenon reported here, whatever its explanation, needs more investigation especially on single crystals which can be grown but which are mechanically fragile because of their lamellar structure, and are also very sensitive to moisture and carbon dioxide.

References

1. C. Linares and F. Gaume-Mahn, C.R. Acad. Sci. Paris 277, 431 (1973).
2. O. K. Moune-Minn and P. Caro, J. Cryst. Spectrosc. Res. 12, 157 (1981).
3. C. Linarès and F. Gaume-Mahn, personal communication, 1981.
4. P. Porcher and P. Caro, J. Chem. Phys. 65, 89 (1976).
5. P. Caro, J. Less-Common Met. 16, 367 (1968).
6. C. Boulesteix, P.Caro, M. Gasgnier, C. Henry la Blanchetais, and G. Schiffmacher, Phys. Lett. A 34, 437 (1971).
7. P. Caro, M. Faucher, J. Derouet, and M. G. Alves, Rev. Chim. Miner. 10, 317 (1973).
8. J. Coutures, A. Rouanet, R. Verges, and M. FOEX, J. Solid State Chem. 17, 171 (1976).
9. J. Coutures, F. Sibieude, and M. Foëx, J. Solid State Chem. 17, 377 (1976).
10. J. Dexpert-Ghys, M. Faucher, and P. Caro, Phys. Rev. B 23, 607 (1981).
11. P. Aldebert and J. P. Traverse, Mater. Res. Bull. 14, 303 (1979).
12. J. X. Boucherle and J. Schweizer, Acta Crystallogr. Sect. B 31, 2745 (1975).
13. O. Greis, J. Solid State Chem. 34, 39 (1980).
14. J. H. Denning and S. D. Ross, J. Phys. C 5, 1123 (1972).
15. L. Pauling, Z. Kristallogr. 70, 187 (1929).
16. Courtesy of Mrs. M. Faucher.
17. M. Faucher, J. Dexpert-Ghys, and P. Caro, Phys. Rev. B 21, 3689 (1980).
18. J. Zarembowitch, J. Gouteron, and A. M. Lejus, Phys. Status Solidi B 94, 249 (1979).
19. J. Gouteron, D. Michel, A. M., Lejus, and J. Zarembowitch, J. Solid State Chem. 38, 288 (1981).
20. S. I. Boldish and W. B. White, Spectrochim. Acta Part A 35, 1235 (1979).
21. J. J. Van der Ki.ink, D. Rytz, F. Borsa, and V. T. Hochli, Phys. Rev. B 27, 89 (1983).
22. Y. Yacoby and S. Just, Solid State Commun. 15, 715 (1974).
23. F. Borsa and U. T. Hochli, Phys. Rev. Lett. 45, 1884 (1980).
